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Abstract. Recently, automated machine learning (AutoML) and neural
architecture search (NAS), regarded as promising techniques to design
deep learning (DL) models automatically, have received increasing atten-
tion from both industry and academia. NAS will generate a large num-
ber of candidate models, which typically consist of numerous common
substructures, providing a vast opportunity for cross-model optimization
(e.g., operator batching) to improve training efficiency. However, most of
the existing AutoML frameworks do not make use of operator batching
and we also lack an efficient batching strategy. In this work, we pro-
pose a heuristic scheme named DPBat to guide the operator batching
among multiple models in NAS. For most models, the operator batch-
ing of DPBat can be finished in just a few seconds, which is negligible
compared to the subsequent training. We adopt Microsoft’s open source
AutoML framework NNI to implement DPBat to real NAS scenarios.
Extensive experiments show that DPBat is highly effective in improving
training efficiency and reducing the overhead of operator batching, with
a throughput 3.7× higher than the standard practice of running each job
without batching.
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1 Introduction

In recent years, deep learning has achieved great success in various domains,
including image classification [7,8], natural language translation [13], and object
detection [9]. However, this success has been accompanied by a growing demand
for architectural engineering. Most of the complex neural architectures are
manually designed (e.g., VGG-16 [10], BERT [4] and GPT-3 [1]), which is
time-consuming and requires lots of expertise experience. Therefore, automated
machine learning (AutoML) and neural architectures search (NAS) have received
more and more attention from both industry and academia. Some institutions
have launched their framework that implements the search for neural network
architectures, such as Microsoft’s NNI, Huawei’s Vega, and Amazon’s Auto-
Gluon.
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Fig. 1. An overview of AutoML pipeline

A typical AutoML pipeline contains four parts as Fig. 1 shows: data prepa-
ration, feature engineering, model generation, and model evaluation. As a key
component of AutoML, the search space defines which neural architectures the
NAS method can discover in principle. The number of models covered by the
search space is enormous, and searching for an optimal model could take up to
hundreds of hours [14]. We first investigate how NAS generates models to reduce
the training cost and optimize hardware resource usage. The optimization in
model generation can be divided into hyperparameter optimization (HPO) and
architecture optimization (AO). Models for hyperparameter tuning often have
the same types of operators with the same shape. Analogously, models in archi-
tecture optimization scenarios tend to have significant similarities as they share
a common skeleton [14]. Operators with the same type and parameters can
potentially be batched together and computed in a single operator kernel, which
enables more fine-grained GPU sharing by using less GPU memory to increase
SIMD utilization. Therefore, there are huge opportunities for AutoML frame-
works to optimize the training of multiple similar models and improve hardware
utilization.

Figure 2 illustrates an example that two models share multiple common oper-
ators, where Model 1 and Model 2 both have conv 3× 3 and ReLU. After batch-
ing, the input of the common operators (conv 3× 3, ReLu) are fused along the
batch dimension, and the outputs are split when operators (BatchNorm2d) vary.

Fig. 2. Operator batching: an example
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In the literature, there are apparent gaps between the requirement to support
this kind of cross-model optimization and the existing operator batching method.
[12] came up with the idea of inter-model horizontal fusion, which only deals
with HPO scenarios. However, the submitted training tasks generated in NAS
are disorder, which [12] would fail to deal with. Besides, the implementation
of operators batching in [14] is limited. First, the types of operator batching
it supports are limited (Conv2d only). Second, the operator batching strategy
in [14] is rudimentary. Specifically, this algorithm uses the idea of breadth-first
search (BFS) to compare the operators of each layer between the models until
they are different, which means that when the first few layers of the models are
different, the strategy’s performance will degrade.

To narrow the gaps mentioned above, we propose a scheme to improve the
batching efficiency in NAS scenarios. Our objective is to make full use of the
similarities among the models and improve training throughput, which is a key
performance indicator of training efficiency. Our contributions can be summa-
rized as follows:

– We formulate the DL job clustering and batching problem in NAS scenarios
described in Sect. 3. The objective is to maximize the throughput of model
training per unit time and help accelerate the process of model generation.

– We propose a novel Dynamical Programming based Batching strategy,
named DPBat. DPBat includes an efficient cluster algorithm that takes advan-
tage of the similarity among the models generated in NAS. Based on the
clustering result, DPBat determines an operator batching strategy by com-
prehensively investigating the performance improvement and overhead.

– We conduct extensive experiments by using Microsoft’s open source AutoML
framework NNI to evaluate the performance of our algorithm in real NAS
scenarios. The experimental results indicate that DPBat can significantly
improve training efficiency and reduce the overhead of operator batching,
achieving up to 3.7× higher throughput than the standard practice of run-
ning each job on a separate accelerator.

2 Motivation

Lack of Indicators to Measure Which Models Should be Batched
Together. The DNN models generated from the same search space tend to
have similarities, and those with the highest similarity should be put together
for operator batching. This is not taken into account by the existing batching
algorithm due to the lack of indicators that can accurately describe the simi-
larity of models. For example, the maximum common subgraph is not a good
indicator. Although a DNN model architecture can be depicted as a data flow
graph (DFG), the model similarity is not equivalent to the size of the largest
common subgraph. As Fig. 3(a) shows, each model is abstracted into a DFG,
where each node represents an operator or a subgraph. Obviously, model 1 and
model 2 have the largest common subgraph. But model 1 and model 3 can batch
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Fig. 3. Similarity and overhead in operator batching

more nodes with smaller common subgraphs. So a wiser solution should be to
batch model 1 and 3 together instead of model 1 and 2, even though they share
a larger common subgraph.

Limitation of the Current Batching Schemes. The idea of inter-model
horizontal fusion in [12] only applies to the situation where the models are all
the same except for hyperparameters. It can not handle the situation when
the architectures of submitted training models get different. Besides, there are
limitations in the implementation of operators batching in [14]. The types of
operator batching it supports are limited, and there is no efficient algorithm to
achieve operator batching between multiple models.

Lack of Consideration for Batching Cost. [12,14] take no consideration
of batching cost. Different from models in [12] which have the same architec-
ture, each layer of operators in the model can be batched without breakpoints
(the position that generates the batch/unbatch cost). In more general scenarios,
operators that can be batched are not continuous. As depicted in Fig. 3(b), the
input of common operators needs to be concated along the channel dimension
while the output is split at the breakpoint. The operations of concating and
splitting bring extra overhead in time and memory. At the same time, batching
of different operators brings different performance improvements. The factors
mentioned above will affect the choice of operators to be batched.

3 Problem Formulation

3.1 System Model

We consider a system with D = {d1, ..., d|D|} computing devices (e.g., GPUs)
and a set of training jobs J = {j1, ..., j|J |} generated by NAS approaches.
Each device di has a limited memory dmem

i . The architecture of each job can
be depicted as a data-flow graph (DFG) Gi(Ni, Ei). Here, Ni is the set of nodes
belonging to graph Gi, Ei is the set of directed edges defining the dependence
among nodes. A single node in graph Gi represents an operator (or a sub-graph)
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with one or multiple input and output tensors. Each node has its own runtime
and memory footprint, denote as nt

ij the execution time of node nij and nmem
ij

the memory occupied by nij . The training time of job ji in one iteration is
jti =

∑
nij∈Ni

nt
ij . And the memory occupied in the training process of ji is

jmem
i =

∑
nij∈Ni

nmem
ij .

3.2 Batching

If JK = {j1, ..., jk} is a job set selected for operator batching, assuming that all
nodes can be divided into b categories according to their attributes. The nodes
in the same category can be batched together. We denote as Ni = {n1

i , ..., n
|Ni|
i }

the nodes in the ith category. After batching, Ni will be replaced by a new
BatchNode Bi. The execution time Bt

i is usually smaller than N t
i . We denote as

pti = N t
i −Bt

i the benefit after batching Ni. The input of Bi need to be concated
along the channel dimension and the output are split when the successor node
of Bi is not BatchNode, which brings extra overhead in time. Denote as J̌K the
production of batching JK . All benefits and costs are P t

K =
∑b

i=1 pti and Bt
K ,

respectively.

3.3 Problem Definition

Based on the above system model, given the set of computing devices D and jobs
J , the execution time jti and occupied memory jmem

i of each job ji, as well as the
possible overhead in operator batching process, our problem is to select the jobs
with the most similar model architecture for operator batching without exceeding
the device memory limit. Our goal is to maximize the utilization of devices by
maximizing the average throughput of training models. Divide the task set J
into several subsets S = {s1, ..., s|S||∀i �= j, si ∩ sj = ∅, s1 ∪ ...∪ s|S| = J } based
on their similarity. The training jobs in si are Ji. For each set si, we need to
find a batching strategy that maximize P t

i −Bt
i , making J̌ t

i as small as possible.
A smaller J̌ t

i means the training process has higher throughput.

4 Algorithm Design

There are several parts to deal with operator batching between multiple models.
The first part is to calculate the similarity of two models (Algorithm 1) and then
cluster multiple models based on similarity (Algorithm 2). The next part is the
design of batching strategy of clustered models (Algorithm 3).

4.1 Clustering Based on Model’s Similarity

Since each model can be represented by a DFG, the similarity between models
correlates with the similarity between graphs. The methods of measuring graph
similarity include maximum common subgraph [2], graph edit distance [6], graph
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Algorithm 1: similarity
1 Input job ji, jk
2 Output similarity of ji and jk
3 Let Hi and Hk be the hash value lists of the topologically sorted nodes from

graph gi and gk ,respectively ;
4 lik ← length of the longest common subsequence of Hi and Hk;
5 ni, nk ← the number of nodes of ji and jk;

6 return 2×lik
ni+nk

isomorphism [5], etc. They cannot usually be solved in polynomial time. We
made some modifications based on the longest common subsequence (LCS) and
calculated the similarity between models by simplifying the graph’s structure.
We describe the details in Algorithm 1.

Algorithm 1 topologically sorts the nodes of the model’s graph and sets the
hash value of each node according to its parameters and attributes. Nodes with
the same hash value mean they can be batched together. Therefore, we use an
ordered list of hash values Hi to approximate the architecture of the original
model’s graph gi (Line 3). And refer to the idea of LCS (Line 4), the final result
lik can be used for measuring jobs’ similarity (Line 5 to Line 6).

By approximately calculating the similarity of the models by Algorithm 1,
we can cluster the job set J . Divide J into several subsets based on similarity
among models. The number of models in each subset depends on the sum of
the model memory, which cannot exceed the device memory limit. We describe
the details of how to cluster job set J in Algorithm 2. At the beginning of
each round of clustering, select a job ji that has not been clustered from the
job set and remove it from J (Line 6). Assign ji to set s (Line 7). When the
model memory in s does not exceed the limit, select a job from the unclustered
job set J and the clustered job set s respectively, and their similarity is the
highest among all the current jobs (Line 8 to Line 9). Add candidate model to
s without exceeding memory constraints and remove it from J (Line 10 to Line
12). Otherwise, restart the next round of clustering (Line 13 to Line 15).

Fig. 4. Possible situations of operator batching
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Algorithm 2: clustering
1 Input training jobs J
2 Output clustered job set S = {s1, s2, ...}
3 S ← ∅;
4 while J �= ∅ do
5 s ← ∅;
6 randomly select a model ji from J and remove it from J ;
7 s ← s ∪ ji;
8 while J �= ∅ and s does not exceed device memory do
9 jcand ← arg maxjm∈J maxjs∈s similarity(js, jm);

10 if s ∪ jcand won’t exceed device memory then
11 s ← s ∪ jcand;
12 Remove jcand from J ;

13 else
14 S ← S ∪s;
15 break;

4.2 Design of Batching Strategy

We first consider batching strategy design for two models and then extend it
to multiple models. For a pair of similar models j1 and j2, we can get l12 (the
maximum number of operators can be batched between model j1 and j2) by
LCS. However, greedy batching of all l12 operators maybe not be guaranteed
to bring the most benefits. Figure 4(a) shows one possible scenario. Because the
length of the operator sequence that can be continuously batched is too short, the
benefit of batching operator h may be less than the additional cost of integrating
and splitting tensors, leading to negative returns. In this case, the strategy that
batching the maximum number of operators is suboptimal.

Besides, the benefits of operator batching are also related to the type of
operators. As Fig. 4(b) shows, there are two batch strategies. Although strategy
2 batches fewer operators, it may yield greater benefits than strategy 1. The
number of breakpoints also affects the training time of the batched model. As
Fig. 4(c) shows, there are two types of fusion strategies that batch the same type
and number of operators. It can be concluded that strategy 2 is better than
strategy 1 because of fewer breakpoints and less overhead.

Therefore, in order to maximize the benefits of operator batching and reduce
the additional overhead, we propose DPBat (Algorithm 3), which takes break-
points, operator types, etc. into account. We guide the multi-model operator
batching through the optimal batching strategy of the two models. The details
are described in Algorithm 3. We use a 4-dimensional array to record the net
benefit generated during the operator batching process. For dp[i][j][0..1][0..1],
the 0 and 1 in the last two dimensions indicate whether the ith and jth ele-
ments are in the batched state, respectively. When the last two dimensions are
1 simultaneously, it means that the ith and jth elements are identical and can
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Fig. 5. Transition equation

be batched. Other values indicate that the ith and jth elements are different
and can not be batched. In addition to adding the benefit p of batching, dp also
needs to subtract the corresponding batch/unbatch cost at the breakpoint. The
specific transition equation is shown in Fig. 5. For a job set si, which includes
multiple models with similar architectures. We select a model from si and ši
respectively. Their similarity is the highest among all current model pairs. ši
stores those models that have been batched (Line 6 to Line 8). Using the tran-
sition equation in Fig. 5 to calculate the maximum net benefit of batching two
models. The batching strategy λ of two models corresponding to the maximum
value in dp is optimal. We incorporate the strategy λ obtained at each round
into the final result λ∗ until job set si becomes empty. (Line 9 to Line 11).

Algorithm 3: DPBat
1 Input similar job set si = {ji1, ji2, ...}
2 Output batching strategy λ∗

3 ši ← {ji1} and remove ji1 from si;
4 λ∗ ← ∅ ;
5 while si �= ∅ do
6 Select a pair of jobs j1, j2 with the highest similarity, j1 ∈ si, j2 ∈ ši. Let

H1, H2 be the hash value lists of their topologically sorted nodes;
7 ši ← ši ∪ j1 ;
8 Remove j1 from si;
9 Calculate the net benefit brought by different operator batching strategies

using equation in figure 5 ;
10 Let λ be the batching strategy corresponding to the maximum value in dp;
11 λ∗ ← λ∗ ∪ λ
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5 Evaluation

In this section, we evaluate the performance of DPBat in real NAS scenarios and
compare it with three baselines. Overall, the key findings include: DPBat signifi-
cantly improves training efficiency and reduces the overhead of operator batching.
DPBat achieves up to 3.7× higher training throughput than running each job seri-
ally, which is a common practice employed by the AutoML framework.

5.1 Experiment Settings

To evaluate DPBat in real scenarios, we used Microsoft’s NAS tool NNI which
can separate the cross model optimization from model generation. We follow the
same configurations as Retiarii [14], select representative NAS solutions MnasNet
[11], MobileNetV2-based model space and reinforcement learning exploration
strategy. In the experiment, the NAS approach will generate 1000 models in
10 batches(100 models each batch). DPBat and the other baselines are given
the same set of models in the same order for a fair comparison. These models
use the same batch size, which is 8 images (ImageNet’s training images [3]) per
mini-batch. We implemented the experiments on 4 NVIDIA Tesla P100 GPUs of
16GB GPU memory. The performance is measured by averaging the throughput
over 1000 mini-batches.

5.2 Three Baselines

We compare DPBat with the following three baselines.

– Serial: each training job is executed on a single accelerator, which is employed
by most DL frameworks [14].

– FCFS: FCFS is the policy used by NNI’s cross-graph optimization engine
and it clusters the jobs by order of arrival rather than similarity. Training
jobs arrive in batches of 100 models, sequentially dividing the task set J into
several subsets. Each subset contains the maximum number of models before
the GPU runs out of memory. For example, training jobs {j1, j2, ..., ji} are
divided into subset s1, {ji+1, ji+2, ..., jk} are divided into s2 and so on. The
design of the operator batching strategy is also extended from two models to
multiple models. For a pair of models, use the idea of BFS to compare the
DFG of the two models layer by layer and stop batching when the layer depth
is the same but the layer nodes are different.

– Greedy: Greedy is the policy described in Retiarii [14] which fuses all
common operators. It does not consider batch/unbatch cost and different
benefits of batching different kinds of operators, which means setting the
batch/unbatch cost and benefit in DPBat to 0.

5.3 Experiment Results

In this part, we present the experimental results on 1000 models and dissect
the source of improvement brought by DPBat. In all cases, our algorithm DPBat
outperforms the other baseline.
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Fig. 6. Performance of different algorithms

The Overall Performance. Figure 6(a) illustrates the four algorithms’ average
throughput of 1000 models. DPBat achieves higher throughput than all baselines,
2.1× (up to 4.7×) over Serial, 1.92× over FCFS, 1.25× over Greedy. FCFS
cannot make full use of the similarity between models because of the lack of
clustering. Moreover, its batching strategy cannot select all the operators that
can be batched either. Greedy focuses on the number of operators that can
be batched. While maximizing the number of batched operators, the additional
batch/unbatch overhead increases. It also ignores the fact that the benefit of
batched operators is related to the operator’s type. Figure 6(b) shows the average
batch/unbatch cost of 1000 models. Because taking breakpoints into account,
DPBat can significantly reduce additional overhead compared to Greedy.

Fig. 7. Performance of different operators

Sources of Improvements. To understand why DPBat achieves better perfor-
mance than the other baselines, we perform a deeper analysis using the PyTorch
profiler to measure the time and memory consumption of the model’s opera-
tors. The advantage of DPBat and Greedy is that they can dynamically select
batched models according to models’ characteristics, which leads to much higher
utilization of GPU memory. Batched operators enable more fine-grained GPU
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sharing by using less GPU memory to increase SIMD utilization. DPBat per-
forms better than Greedy mainly because of its awareness of operator batching
costs.

Fig. 8. Contribution of different operators to the performance improvement

We analyze the contribution of different types of operators to performance
improvement. The operator types in the training models mainly include ReLU,
Dropout, Linear, BatchNorm, and Conv2d. Figure 7 shows the running time
of different types of operators. When batching the same number of operators,
the benefits are obviously different. Batching Conv2d brings the highest bene-
fits, followed by BatchNorm. As Fig. 8 shows, Conv2d and BatchNorm are the
main sources of the benefit brought by operator batching. DPBat is better than
Greedy in picking out the type of operator that brings the most performance
improvement.

6 Conclusion

In this paper, we study the multi-model operator batching strategy in the NAS
scenario. By characterizing the model architecture as a DFG, calculating the
similarity of graphs approximately, and batching common operators of models
to improve training efficiency. Our objective is to maximize the throughput of
model training per unit time. We propose a heuristic algorithm named DPBat
to guide the operator batching among multiple models. Based on Microsoft’s
AutoML framework NNI, we apply DPBat to real NAS scenarios. Experiment
results show that DPBat significantly improves training efficiency and reduces
the overhead of operator batching. Furthermore, DPBat achieves up to 3.7×
higher training throughput than running each job on a separate accelerator,
which is a common practice employed by the AutoML framework. Although we
only focus on models whose DFGs are directed acyclic graphs, we believe our
results will inspire future work on optimizing batching strategy between multiple
models in a more general setting.
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